Small multidrug resistance protein EmrE reduces host pH and osmotic tolerance to metabolic quaternary cation osmoprotectants.

نویسندگان

  • Denice C Bay
  • Raymond J Turner
چکیده

The small multidrug resistance (SMR) transporter protein EmrE in Escherichia coli is known to confer resistance to toxic antiseptics classified as quaternary cation compounds (QCCs). Naturally derived QCCs synthesized during metabolic activities often act as osmoprotectants, such as betaine and choline, and participate in osmotic homoestasis. The goal of this study was to determine if EmrE proteins transport biological QCC-based osmoprotectants. Plasmid-encoded copies of E. coli emrE and the inactive variant emrE-E14C (emrE with the E → C change at position 14) were expressed in various E. coli strains grown in either rich or minimal media at various pHs (5 to 9) and under hypersaline (0.5 to 1.0 M NaCl and KCl) conditions to identify changes in growth phenotypes induced by osmoprotectant transport. The results demonstrated that emrE expression reduced pH tolerance of E. coli strains at or above neutral pH and when grown in hypersaline media at or above NaCl or KCl concentrations of 0.75 M. Hypersaline growth conditions were used to screen QCC osmoprotectants betaine, choline, l-carnitine, l-lysine, l-proline, and l-arginine. The study identified that betaine and choline are natural QCC substrates of EmrE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outer membrane protein OmpW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux.

In Escherichia coli, the small multidrug resistance (SMR) transporter protein EmrE confers host resistance to a broad range of toxic quaternary cation compounds (QCC) via proton motive force in the plasma membrane. Biologically produced QCC also act as EmrE osmoprotectant substrates within the cell and participate in host pH regulation and osmotic tolerance. Although E. coli EmrE is one of the ...

متن کامل

Influence of quaternary cation compound on the size of the Escherichia coli small multidrug resistance protein, EmrE

EmrE is a member of the small multidrug resistance (SMR) protein family in Escherichia coli. It confers resistance to a wide variety of quaternary cation compounds (QCCs) as an efflux transporter driven by the transmembrane proton motive force. We have expressed hexahistidinyl (His6) - myc epitope tagged EmrE, extracted it from membrane preparations using the detergent n-dodecyl-β-D-maltopyrano...

متن کامل

Structural and functional comparison of hexahistidine tagged and untagged forms of small multidrug resistance protein, EmrE

EmrE is a member of the small multidrug resistance (SMR) protein family in Escherichia coli. EmrE confers resistance to a wide variety of quaternary cation compounds (QCCs) as an efflux transporter driven by proton motive force. The purification yield of most membrane proteins are challenging because of difficulties in over expressing, isolating and solubilizing them and the addition of an affi...

متن کامل

Multimeric forms of the small multidrug resistance protein EmrE in anionic detergent.

Escherichia coli multidrug resistance protein E (EmrE) is a four transmembrane alpha-helix protein, and a member of the small multidrug resistance protein family that confers resistance to a broad range of quaternary cation compounds (QCC) via proton motive force. The multimeric states of EmrE protein during transport or ligand binding are variable and specific to the conditions of study. To ex...

متن کامل

Metabolic engineering of plants for osmotic stress resistance.

Genes encoding critical steps in the synthesis of osmoprotectant compounds are now being expressed in transgenic plants. These plants generally accumulate low levels of osmoprotectants and have increased stress tolerance. The next priority is therefore to engineer greater osmoprotectant synthesis without detriment to the rest of metabolism. This will require manipulation of multiple genes, guid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 21  شماره 

صفحات  -

تاریخ انتشار 2012